Characterization of Adeno-Associated Virus (AAV) Using Capillary Electrophoresis

Tingting Li,¹ Mukesh Malik,¹ Handy Yowanto,¹ Sahana Mollah², Stephen Lock³, Stefan Jenzer⁴ and Katja Schreiter⁴

1 SCIEX, Brea, CA, USA; 2 SCIEX, Redwood City, CA, USA; 3 SCIEX, Warrington, UK; 4 Sciex, Darmstadt, Germany

INTRODUCTION

Fast growth in cell and gene therapy industry has generated an urgent need for fast and robust analytics for characterization of both vectors and various types of nucleic acid biotherapeutics such as oligonucleotides and plasmid DNA.

Adeno-associated virus (AAV) is one of the most widely used gene delivery vehicles for gene therapy because of its nonpathogenicity, low immunogenicity and different tropism to multiple cell types. Although there are efforts to develop methods for characterization of AAV, there are still imitations and drawbacks to some of these analysis. In addition, the different workflows are done on different platforms. Purity analysis of the AAV viral proteins is important for quality assurance and safety of AAV capsid products. Although SDS-PAGE (sodium dodecyl suffate polyacrylamide gel electrophoresis) has been used for AAV capsid protein analysis in the industry, CE-SDS (Capillary Electrophoresis - Sodium Dodecyl Sulfate) method on the SCIEX PA800 Plus provides automated separation of proteins in the range of 10kD to 25kD with higher resolution, quantitation capability, better reproducibility and is less lator intensive than traditional SDS-PAGE. The CE-SDS method using UV or PDA detector and stacking injection technology could provide good results for AAV sample with titer greater than 1X10¹² GC/mL. However, for in-process AAV product analysis, higher sensitivity is required for purity analysis of AAV with concentration as low as 1X10¹⁰ GC/mL.

Here we present CE based workflows for characterization of AAV viral proteins using a UV detector, and alternatively utilizing a dye for sample labeling with LIF detector when an increase in sensitivity is required. These methods provide a straight forward and easy sample preparation, excellent resolving power, good repeatability and linearity of absorbance response to sample concentration.

MATERIALS AND METHODS

Sodium dodecyl sulfate (PN L4390-100G) and 2-mercaptoethanol (PN M3148-100ML) were obtained from Sigma-Aldrich (St. Louis, MO, U.S.A.). Amicon Ultra-0.5 Centrifugal Filters with 30,000 NMVL were purchased from EMD Millipore (Billerica, MJ, U.S.A.). The SDS-MW Analysis KI (PN 390953) was from SCIEX (Framingham, MA, U.S.A.), which includes the SDS-MW gel buffer(proprietar) formulation, pH 8, 0.2% SDS), acidic wash solution (0.1 N HCI), basic wash solution (0.1

Data acquisition and analysis were performed using 32 Karat[™] Software 10. Packaged AAV2 of pAV-CMV-GFP with titer at 2.24x10¹³ GC/mL (titer as supplied by vendor) and packaged AAV8 of pAV-CMV-GFP with titer at 3.99x10¹³ GC/mL and 1.57x10¹⁴ GC/mL (titer as supplied by vendor) for PDA and LIF detection, respectively, was purchased from Vigene Biosciences (Rockville, MD, U.S.A.). Both samples were kept in storage solution of PBS (Phosphate Buffered Saline, pH 7.5/)0.001% pluronic F68.

RESULTS

Analysis Using CE-SDS and PDA Detector: The method was developed and optimized using an AAV8 sample at 1x10¹³ GC/mL which is the nominal concentration from AAV manufacturing. Figure 1 illustrates the overlay of the 8 consecutive injections of this AAV8 sample. The VP3 :VP1 ratio of the AAV8 sample lot tested is about 8:1:1.

Figure 1. Eight consecutive injections of an AAV8 sample with estimated titer at 8x10¹³ GC/mL with a PDA detector. This shows a good baseline resolution of the 3 capsid proteins. Figure 2. AAV8 sample was buffer exchanged to different concentrations (different folds) showing peak consistency over concentrations.

A similar study was done by buffer exchanging the AAV8 sample to different titers (different folds) for method evaluation as shown in Figure 2. The titer values listed in the figure are a rough estimation from the folds of buffer exchange/concentration procedure. The peaks are consistent over the various concentrations.

This method was also evaluated for different buffer treatments. Comparison of the peaks as shown in figure 3 demonstrate no obvious difference in peak profile for all conditions

		RSD% of Corrected Peak Area%				
Table 1. Repeatability of AAV2 and AAV8 at different concentration.	Viral Proteins	AAV8 1x10 ¹³	AAV8 4x10 ¹³	AAV8 8x10 ¹³	AAV2 5x10 ¹³	AAV2 2x10 ¹³
	VP3	0.44	0.45	0.43	0.68	0.64
	VP2	0.38	0.38	0.34	0.66	0.61
	VP1	0.51	0.39	0.39	0.74	0.63

Table 1 demonstrates excellent repeatability of this method by evaluating the RSD% of corrected peak areas (CPA%) of 3 viral proteins of AAV2 and AAV8 at different titers and using different pretreatment methods. The calculation is based on 8 consecutive injections of each sample solution. All the RSD% of CPA% are less than 0.7%.

In addition, this method demonstrates excellent linearity of analyzing AAV8 samples from 5x10¹¹ GC/mL to 1x10¹⁴ GC/mL by plotting absorbance response of VP3 to sample titers (Figure 4). The R2 is 0.9991.

Figure 4. Linearity of Absorbance Response (mAU) to AAV 8 Sample Concentration (10¹³ CC(mL))

Analysis Using CE-SDS and LIF Detector: The CE-SDS method using UV or PDA detector and stacking injection technology could provide good results for AAV sample with titer greater than 1x10¹² GC/mL.¹³ However, for in-process AAV product analysis, higher sensitivity is required for purity analysis of AAV with concentration as low as 1x10¹⁰ GC/mL. This utilizes FQ (3-2-{ftruryl quinoline-2-carboxaldehyde) dye for sample labeling and Laser induced fluorescence (LIF) detector with emission filter of 600 nm for sample detection to increase the sensitivity of AAV capsid purity analysis. Figure 5 shows the signal comparison of AAV8 using the PDA and LIF detector. Better sensitivity and baseline is seen with LIF.

Figure 5. Comparison of capaid protein analysis using PDA detector and using FQ dye labeling with LIF detector. A is the electropherogram of 1x10° GC/mL AW8 capaid protein analysis using FQ dye labeling and LIF detector. B is the electropherogram of 1x10° GC/mL AW8 capaid protein analysis using PDA detector

To demonstrate repeatability, multiple injections were conducted at a lower level than was conducted for PDA detection. Figure 6 shows good reproducibility from six consecutive injections of AAV8 sample at 1x10¹⁰ GC/mL with baseline separation.

Table 2 demonstrates excellent repeatability of this method by evaluating the RSD% of corrected peak areas% (CPA%) of three viral proteins of AAV2 and AAV8 at different filters. The calculation is based on six consecutive injections of each sample solution for AAV8 samples and 8 consecutive injections of each sample solution for AAV2 samples.

Figure 6. Six consecutive injections of an AAV8 sample with the lower titer at $1x10^{10}$ GC/mL. using LIF detector.

This LIF based method also demonstrates excellent linearity of analyzing AAV8 samples from $1\times10^{10}~GC/mL$ to $1.6\times10^{14}~GC/mL$ by plotting peak area of VP3 to sample titers (Figure 7). The R2 is 0.9989 with about 4 orders of LDR.

CONCLUSIONS

- Complete workflow solution for AAV capsid protein purity analysis including hardware, software, reagent kits and consumables
- Excellent Baseline resolution of AAV viral proteins VP1, VP2 and VP3
 Ultra-high sensitivity AAV capsid purity analysis with LIF for AAV samples
- down to the in-process product analysis requirement level of 1x10¹⁰ GC/mL
- Robust, good repeatability with RSD% < 0.7% of CPA%(Corrected Peak Area%) of viral proteins for PDA detection
- Good linearity of absorbance response to sample concentration with 3 and 4 orders of magnitude, respectively for PDA and LIF detection
 Suitable method for QC capsid protein purity test of AAV products

REFERENCES

- 1. 1.SCIEX Technical Note: Purity Analysis of Adeno-Associated Virus(AAV) Capsid Proteins using CE-SDS Method
- Zhang, C.; Meagher, M. M. Anal. Chem. 2017, 89, 3285–3292.
 Quiring Levelite (2011) Modern Injection Modes (Stacking) for CE.
- Quirino, Joselito. (2015). Modern Injection Modes (Stacking) for CE. 10.1002/9783527678129.assep035.

TRADEMARKS/LICENSING

For a copy of this poster and additional

scan this QR code or go to: sciex.li/pckupa