
Quantifying Cell Morphology 
With Label-free Imaging 
and Deep Learning

Introduction
Label-free modes of light-microscopy like bright-field or 
phase-contrast microscopy are a central pillar of routine 
workflows in cell culture laboratories. Scientists rely on 
this method, combined with their deep insight into cell 
biology and their experience in judging such images, to 
assess the state of their cell cultures and drive critical 
decisions. For quantitative measurements however, 
especially those that go beyond simple measurements 
of cell covered area, staining techniques combined with 
specialized image analysis routines are often employed. 
This raises the question: If profound information 
about the cells' state is obviously contained in the 
label-free images, why can they not be used to 
extract quantitative results?
Here, we review an analysis paradigm that employs 
deep learning methodologies as the key ingredient to 
turn label-free microscopy into a universal, quantitative 
assay technique. Artificial Neural Networks (ANN) are 
ideally suited to capture the specialized knowledge of 
one or more human experts to produce a robustified, 
objective and scalable version of the human brain's 
remarkable capability in structure detection and 
classification.
 

Workflow
After acquisition of a representative set of images, the 
machine-learning process is initiated by generating a set 
of labeled data for training. For this purpose, the human 
expert uses a labeling software that works like a simple 
graphics program: The structures of interest are 
highlighted in partly transparent colors on top of 
the original images. Multiple colors can be used to 
label different classes to be detected, e.g. cell nuclei and 
cytoplasm.
When a representative set of all relevant morphologies 
has been labeled in this way, a suitable ANN is trained 
to reproduce the labels. The performance of the ANN is 
validated on new images, which have not been used in 
training. This ensures that the ANN has learned to 
generalize from the specific labeled images and is now 
capable of detecting the intended morphologies in 
general. Additionally, quantitative metrics like the 
prediction accuracy of labeled data, which were not 
used in the training, may be employed to validate the 
ANN's performance. If the performance does not meet 
the requirements, the training process may be 
enhanced by adding more labeled data or by using a 
more potent architecture for the ANN.

Examples
With the method described above, precise and reliable 
image segmentation algorithms can be obtained. As 
shown in fig. 1, very fine structures like neurites can 
be detected and distinguished from the cell bodies. 
Such capabilities immediately lead to sensitive and 
robust assays, e.g. for the detection of subtle neuro-
toxicological effects well below the threshold of actual 
aptotosis or necrosis . 
As shown in fig. 2, treatment-induced effects, like the 
disappearance of sub-cellular structures, can be 
detected and quantified without the need to previously 
stain the structure. This opens the possibility of a more 
un-biased approach to phenotypic assay design, as 
compared to the total reliance on specific staining 
agents.
Finally, fig. 3 shows that segmentation of standard cell 
regions like nucleus and cytoplasm can be achieved with 
precision. Even the flat parts of adherent cells can be 
detected and quantified. Such a standardized and 
generic approach of cell morphology quantification 
opens the door to an un-biased, multiparametric 
characterization and clustering of complex physiological 
effects. This extends to sub-visual effects, i.e. 
morphological profiles that are characteristic of a 
particular condition, but which are not evident to a 
human observer. As an example, fig. 4 shows the 
successful classification of keratinocytes into the age-
class of the cell donors.

Requirements for implementation
The approach outlined here is sufficiently generic as to 
be implemented by any team of researchers with the 
required skill set in cell culture, microscopy and data 
science. However, for application in productive routine 
use, a high degree in standardization, automation 
and usability in all three areas is required to make the 
method viable and efficient. Ideally, a specialized 
microscopy solution is employed that is tailored for the 
specific needs of machine learning rather than generic 
image inspection. Automated image acquisition and 
direct incorporation of metadata are essential to avoid 
excessive variability and human error. Furthermore, 
directly integrating the rather complex but nonetheless 
tedious steps for data preprocessing, machine learning 
and result generation with the previous steps is 
advisable to eliminate the waste of precious data 
scientists' time on repetitive tasks. All analyses shown 
here were performed with a VAIDR-System by TRI 
Thinking Research Instruments GmbH.
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Fig. 1: Neurons imaged analyzed with the VAIDR-
System. Colored overlays show segmentation 
results: Green: Cell bodies, magenta: neurites.

Fig. 2:  HepG2 cells imaged analyzed with the 
VAIDR-System. Colored overlays show 
segmentation results: Yellow: Cells, blue: droplets. 
Inset shows diappearance of droplets under 
treatment with NFT, while confluency stays 
constant.

Fig. 3:  Keratinocytes imaged analyzed with the 
VAIDR-System. Colored overlays show 
segmentation results: Blue: Nucleus, yellow: inner 
cytoplasm, green: outer cytoplasm.
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Fig. 4:  Keratinocyte donor age prediction. ANN was 
trained to predict the donor age group (young, medium, 
old) in a two-step classification scheme:
(A) Classification results of young donors vs medium or 
old donors. (B) Results for medium vs old donors.


