

High throughput quantitative pharmacology: cross platform comparison of ion channel activating compounds for pain

<u>Finbar Gaffey</u>, David McCoull, Sam Bourne, Jonathan M Large, Jeff Jerman, Paul D Wright LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK

Introduction

The two-pore domain potassium (**K2P**) family of ion channels represent an attractive opportunity for the development of **novel pain therapeutics**. Channel dysfunction has been shown to promote pain phenotypes and human genetic data has linked K2Ps to disease.

Results

Thallium flux

TREK-2

- BL-1249

Given current therapies exhibit incomplete efficacy, addictive properties and sedation, there is an urgent need for new treatments. **K2P activators** show early promise but have not yet been clinically validated.

Here we define pharmacology of a subset of published **tool compounds** across multiple systems against **TREK-2** and **TREK-1** of the K2P family.

Aims

- Define pharmacology of tool compound activators against TREK-2 and TREK-1, investigating potency and efficacy.
- Validate activator tool compounds across multiple assay platforms, identifying most potent and robust molecules in each system.

Methods

	Thallium Flux	Automated Patc Clamp	h Manual Patch Clamp
CELL SYSTEM	Frozen U-2 OS cells transiently transduced with BacMam ¹	Stable CHO cell line expressing TREK-2	tsA201 cells transiently tranfected ²
	384 well – 5k/well	48 well – 9m/mL	Single Bath
OUND RATION	ECHO Acoustic Dispenser +		

Figure 2 – Activity of tool molecules in thallium flux assay. Representative 10 point dose response curves of tool compounds. Compounds with published pEC50s > 5 were run at top concentrations of 100 μ M, all other compounds top concentration of 10 μ M. Rate refers to fluorescence increase between 13 and 19s post thallium addition in U-2 OS cells transduced with 4%/2% TREK-2/TREK-1 respectively. Results ± S.E.M from three independent experiments (n=2 per experiment). Data analysed using Graphpad prism.

Manual Patch clamp electrophysiology

Figure 3 – Outward current in tsA201 cells overexpressing TREK-2 or TREK-1 pre and post compound treatment; cells were subject to continuous compound perfusion during treatment. Compounds tested at top concentrations used previously in thallium flux. Results from one experiment (n=5); * = p<0.005, *** = p<0.005 as determined using a paired T-test. Compounds were chosen that showed less activity than expected, or no activity, in thallium flux (C3001a and RNE28) and compared to robust activators (BL-1249 and ML402)

	TREK-2		TREK-1	
	Thallium flux	Electrophysiology	Thallium flux	Electrophysiology
3L-1249	Activator (pEC50 = 5.9 ± 0.1)	Activator	Activator (pEC50 = 6.8 ± 0.1)	Activator**
-lufenamic Acid	Activator (pEC50 = 4.4 ± 0.2)	ND	Activator (pEC50 = 5.2 ± 0.2)	ND
ML67-33	Activator (pEC50 = 5.5 ± 0.1)	Partial activator*	Activator (pEC50 = 5.6 ± 0.2)	ND
DCPIB	Activator (pEC50 = 4.9 ± 0.4)	ND	Activator (pEC50 = 5.9 ± 0.1)	ND
ML402	Activator (pEC50 = 6.4 ± 0.1)	Activator	Activator (pEC50 = 5.9 ± 0.1)	Activator**
ML355	Activator (pEC50 = 6.0 ± 0.1)	ND	Activator (pEC50 = 5.8 ± 0.1)	ND
PGF2a	Activator (pEC50 = 5.5 ± 0.7)	ND	Inhibitor (pIC50 = 6.8 ± 0.1)	ND
Г2А8	Inactive	ND	Inactive	ND
C3001a	Inactive	Activator (manual patch only)	Inactive	Activator**
Pranlukast	Partial activator	ND	Partial activator	ND
Zafirlukast	Inactive	ND	Inhibitor (pIC50 = 5.8 ± 0.2)	ND
2-APB	Inactive	ND	Inhibitor (pIC50 = 5.9 ± 0.1)	ND
GI 530159	Inactive	Inactive*	Activator (pEC50 = 6.5 ± 0.1)	ND
ONO-RS-082	Activator (pEC50 = 5.2 ± 0.2)	Inactive*	Activator (pEC50 = 5.7 ± 0.1)	ND
RNE28 Acid	Inactive	Inactive*	Inactive	ND
RNE28 Salt	Inactive	Inactive	Inactive	Inactive**

Results

Automated Patch clamp electrophysiology

Figure 1 – Representative 6 point dose response curves of tool compounds showing significant activity in Q-patch recordings. Outward current normalized to pre-addition baseline (0) and maximal compound response (1). All other compounds tested showed no activation at top concentrations, apart from ML67-33 displaying partial activity. Results ± S.E.M, n=5 from two independent experiments. Data analysed using Analyzer 6.6.44 (Sophion).

References

- 1. Wright PD, Veale EL, McCoull D, Tickle DC, Large JM, Ococks E, Gothard G, Kettleborough C, Mathie A, Jerman J. Terbinafine is a novel and selective activator of the two-pore domain potassium channel TASK3. Biochemical and biophysical research communications. 2017 Nov 4;493(1):444-50.
- 2. Wright PD, McCoull D, Walsh Y, Large JM, Hadrys BW, Gaurilcikaite E, Byrom L, Veale EL, Jerman J, Mathie A. Pranlukast is a novel small molecule activator of the two-pore domain potassium channel TREK2. Biochemical and biophysical research communications. 2019 Nov 26;520(1):35-40.

Table 1 – Comparative pharmacology of tool compounds; activity of compounds defined relative to maximum activity of BL-1249 (Activator = >40%; Partial activator = 20 - 40%; Inactive = <20%); * = only run in automated patch clamp format; ** = only run in manual patch clamp format; ND = no data

Conclusions

- Potency and efficacy of compound panel defined against TREK-2 and TREK-1 in multiple assay systems
- BL-1249 and ML 402 demonstrate robust activation across numerous platforms
- Several compounds present novel activity profiles (notably 2-APB inhibition at TREK-1, and ONO-RS-082 activation at TREK-2)
- Future work validation of compounds in alternate assays (e.g. membrane potential dye) and understand functional consequences in physiologically relevant systems (e.g. DRG cultures)