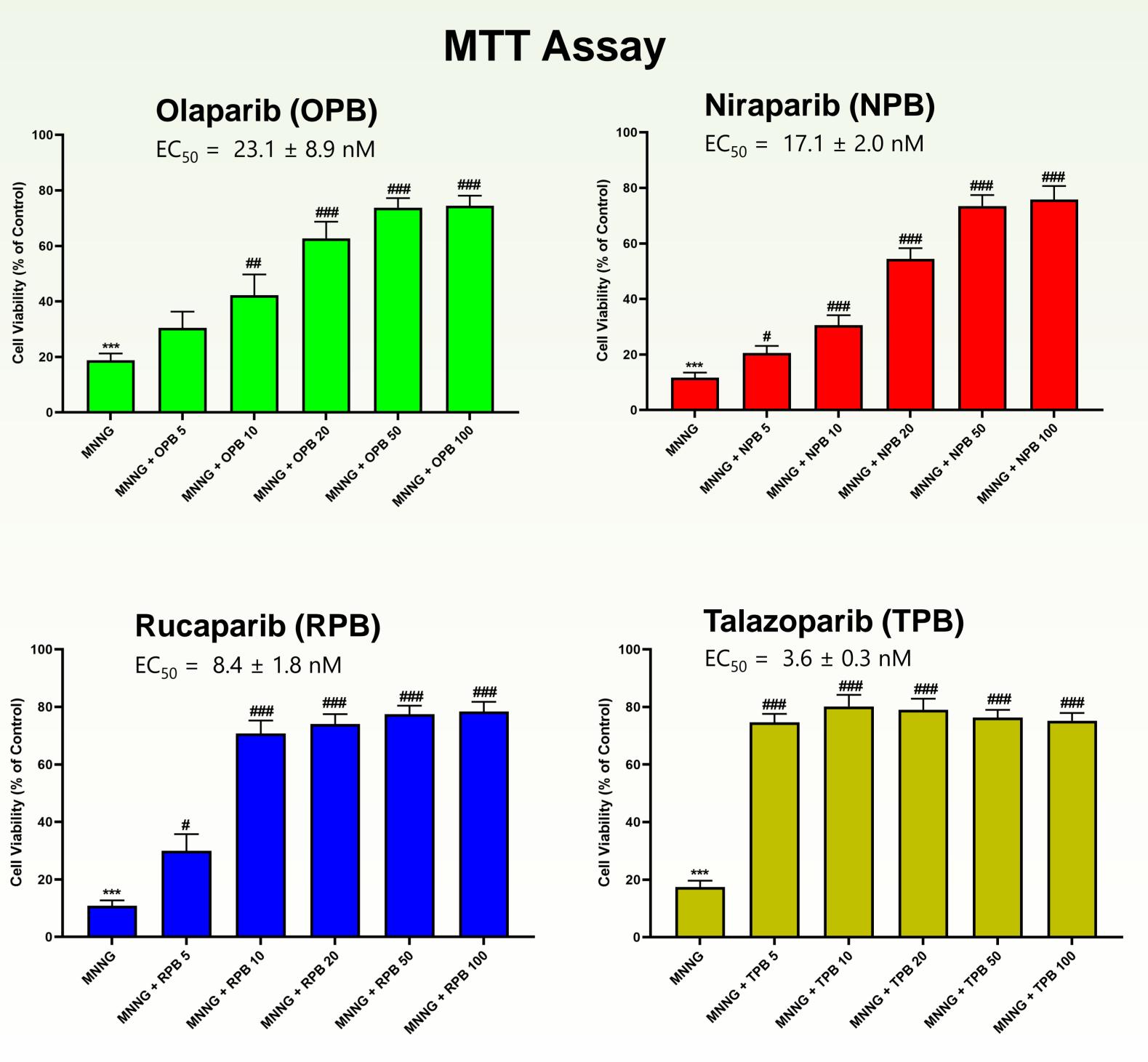
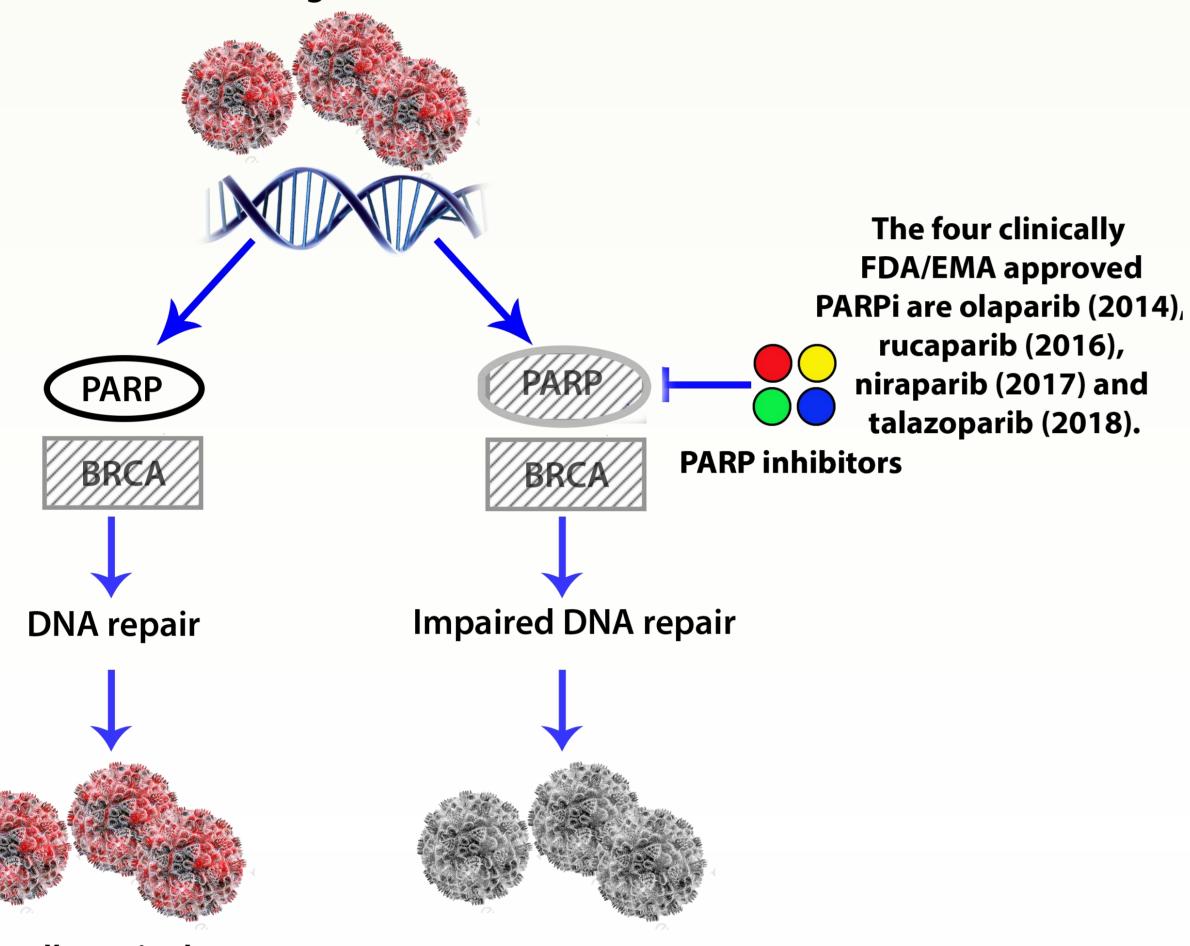
LIVERPOOL JOHN MOORES

A cell-based neuroprotection assay targeting poly (ADP-ribose) polymerase (PARP) reveals oncology-based potency ranking of clinically used PARP inhibitors (PARPi)


Saheed O. Benson¹, Fyaz M.D. Ismail¹, Amos A. Fatokun¹

¹Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK

1. Introduction


- Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) selectively kill cancer cells that harbour mutation in tumour suppressor genes, such as *BRCA1* and *BRCA2*.
- Four PARPi are currently used in the clinic as monotherapy for *BRCA*-mutated cancers.
- PARPi have also been suggested for repurposing for

4. Results

neurological and neurodegenerative indications, wherein excessive PARP activation leads to neuronal death and PARP inhibition is neuroprotective [1].

DNA damage in cancer cells

Figure 1: Each of the four PARPi (5-100nM) shows concentration-dependent protection against MNNG-induced reduction in cell viability, as quantified by the MTT assay. ***P<0.001 with respect to the control; ###P<0.001, ##P<0.05 and #P<0.01 with respect to MNNG alone.

2. Aim

To examine whether our cell-based assay, originally designed for interrogating PARP-mediated neuronal death, is adaptable to other application contexts by revealing the established, oncology-related rank order of potencies for the PARPi.

3. Methods

- PARP-dependent cell death was induced in HeLa cells by treatment with the alkylating agent, *N*-methyl-*N*-nitro-*N*nitrosoguanidine (MNNG) (50µM, 25 minutes) [2].
- Cells were treated with each of four PARP inhibitors: Olaparib, niraparib, rucaparib and talazoparib (each up to 10µM).

Table 1: EC_{50} values (Mean ± SEM) for the four PARPi and their relative potencies. The EC_{50} values revealed their potencies in the following order: talazoparib > rucaparib > niraparib > olaparib.

	EC ₅₀ /IC ₅₀ (nM)		Potency ratio vs. olaparib	
	EC ₅₀ (our <u>cell-based</u> assay)	IC ₅₀ (literature-reported, <u>cell-free</u> assay)	Our Cell-based Assay	Literature- reported Cell-free Assay
Olaparib	23.1 ± 8.9	5	1	1
Niraparib	17.1 ± 2.0	3.8	1.3	1.3
Rucaparib	8.4 ± 1.8	2	2.8	2.5
Talazoparib	3.6 ± 0.3	0.57	6.4	8.8

- Protection against cell death (evidence of PARP inhibition) was assessed 24 h after MNNG treatment using the MTT assay.
- EC₅₀ values reported as means ± SEM; n=3-6.
- Statistical analysis (in GraphPad 9.2.0): ANOVA with Tukey's post-hoc test; P<0.05 considered statistically significant.

5. Conclusions

- Although the cell-based EC_{50} values are higher than the literature-reported IC_{50} values in cell-free assays, the order of potency was the same and the relative potencies compared to olaparib were similar [2].
- Our cell-based assay is therefore robust for the characterisation of PARPi for oncological and repurposing applications.

References:

1. Fatokun AA et al. (2013). Identification through high-throughput screening of 4'-methoxyflavone and 3',4'-dimethoxyflavone as novel neuroprotective inhibitors of parthanatos. Br. J. Pharmacol. **169**: 1263-78. 2. Slade D (2020). PARP and PARG inhibitors in cancer treatment. Genes Dev. **34**:360-394.