The drug-induced interface that drives HIV-1 integrase hypermultimerization and loss of function

Matthew R. Singer¹, Tung Dinh², Arun S. Annamalai², Lorenzo Briganti², Nicola J. Cook¹, Valerie E. Pye¹, Ian A. Taylor³, Kyungjin Kim⁴, Baek Kim^{5,6}, Mamuka Kvaratskhelia², and Peter Cherepanov^{1,7}

¹ Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK; ² Division of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado, USA; ³ Macromolecular Structure Laboratory, The Francis Crick Institute, London, UK; ⁴ ST Pharm Co. Ltd., Seoul, South Korea; ⁵ Center for Drug Discovery, Children's Healthcare of Atlanta, Atlanta, Georgia, USA; ⁶ Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA; ⁷ Department of Infectious Disease, St-Mary's Campus, Imperial College London, London, UK.

Abstract

Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are an emerging class of small molecules that disrupt viral maturation by inducing aberrant multimerization of IN. Here, we present cocrystal structures of HIV-1 IN with two potent ALLINIs, BI-D and the drug candidate STP0404. The structures reveal atomistic details of the ALLINI-induced interface of the IN catalytic core and carboxyl-terminal domains (CCD and CTD). Projecting from their principal binding pocket on the HIV-1 IN CCD dimer, the compounds harness a triad of invariant IN CTD residues, Tyr226, Trp235, and Lys266, to nucleate the CTD-CCD interaction. The ALLINI-induced interface primarily involves the CTD SH3-like fold and extends to the beginning of the IN carboxyl-terminal tail. We show that mutations of HIV-1 IN CTD residues that participate in the interface with the CCD greatly reduce the IN-aggregation properties of STP0404. Our results provide a reliable template for the rational development of this series of antiretrovirals through optimization of their key contacts with the viral target.