The drug-induced interface that drives HIV-1 integrase hypermultimerization and loss of function

Matthew R. Singer ${ }^{1}$, Tung Dinh ${ }^{2}$, Arun S. Annamalai ${ }^{2}$, Lorenzo Briganti ${ }^{2}$, Nicola J. Cook ${ }^{1}$, Valerie E. Pye ${ }^{1}$, Ian A. Taylor ${ }^{3}$, Kyungjin Kim ${ }^{4}$, Baek Kim ${ }^{5,6}$, Mamuka Kvaratskhelia², and Peter Cherepanov ${ }^{1,7}$
${ }^{1}$ Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK;
${ }^{2}$ Division of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado, USA; ${ }^{3}$ Macromolecular Structure Laboratory, The Francis Crick Institute, London, UK; ${ }^{4}$ ST Pharm Co. Ltd., Seoul, South Korea; ${ }^{5}$ Center for Drug Discovery, Children's Healthcare of Atlanta, Atlanta, Georgia, USA; ${ }^{6}$ Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA; ${ }^{7}$ Department of Infectious Disease, St-Mary's Campus, Imperial College London, London, UK.

Abstract

Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are an emerging class of small molecules that disrupt viral maturation by inducing aberrant multimerization of IN. Here, we present cocrystal structures of HIV-1 IN with two potent ALLINIs, BI-D and the drug candidate STP0404. The structures reveal atomistic details of the ALLINI-induced interface of the IN catalytic core and carboxyl-terminal domains (CCD and CTD). Projecting from their principal binding pocket on the HIV-1 IN CCD dimer, the compounds harness a triad of invariant IN CTD residues, Tyr226, Trp235, and Lys266, to nucleate the CTD-CCD interaction. The ALLINI-induced interface primarily involves the CTD SH3-like fold and extends to the beginning of the IN carboxyl-terminal tail. We show that mutations of HIV-1 IN CTD residues that participate in the interface with the CCD greatly reduce the IN -aggregation properties of STP0404. Our results provide a reliable template for the rational development of this series of antiretrovirals through optimization of their key contacts with the viral target.

