F_0F_1 -ATP synthase subunit α – A tale of two fragments

K. Subrtova¹, O. Gahura², M. Saldivia³, B. Panicucci², J. Mottram³, A. Zikova², A. Schnaufer¹

1 Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK

2 Institute of Parasitology, Biology Centre, ASCR, Ceske Budejovice, Czech Republic

3 Centre for Immunology and Infection, University of York, York, UK

The F_0F_1 -ATP synthase is a reversible nanomotor synthesizing ATP in bacteria and eukaryotic mitochondria. The core catalytic F_1 moiety of this multisubunit complex is formed by a globular hexamer of alternating subunits α and β sitting on a central stalk consisting of subunit γ and small subunits δ and ϵ [1]. The composition and structure of the core F_1 -ATPase is believed to be strictly conserved throughout evolution [1], however this notion is based on the established structures of F_0F_1 -ATP synthase complexes of bacteria and model eukaryotes and may not reflect full eukaryotic diversity. Several reports have indicated that the Euglenozoa F_1 -ATPase subunit α is split into two fragments, presumably by proteolytic cleavage [2–5]. Both fragments stay associated with the complex. This feature appears to have no parallel in any other group of organisms. In this project, we are investigating whether α cleavage results in novel features of this key enzyme, that are important for the structure/function of F_0F_1 -ATP synthase in trypanosomes. We also aim to identify the protease responsible.

[1]J.E. Walker, Biochem. Soc. Trans. 41(2013) [2]A. Zikova, et al, PLoS Pathog. 5 (2009) [3]D. Speijer, et al, Mol. Biochem. Parasitol. 85 (1997)[4]R.E. Nelson, et al, Mol. Biochem. Parasitol. 135 (2004) [5]E. Perez, et al, Mitochondrion 19 (2014)