CN-BIO Human liver microphysiological system for studying acute and chronic drug-induced liver toxicity *in vitro*

Ovidiu Novac¹, Kim Lachani¹, Lucy-May Young¹, Tomasz Kostrzewski¹ and David Hughes¹ 1. CN Bio Innovations Ltd, Cambridge Science Park, Cambridge, CB4 0WN, United Kingdom Corresponding author: David Hughes (david.hughes@cn-bio.com)

INTRODUCTION

The liver is one of the organs most susceptible to drug toxicity and drug-induced liver injury (DILI). DILI is a major cause of drug attrition, with more than 750 FDA approved drugs known to have a degree of DILI risk [I]. There are a number of strategies to de-risk DILI in drug discovery and, in recent years, focus has turned to human *in vitro* 3D liver models to better predict DILI in early and pre-clinical development [2]. These models culture primary human liver cells, often in cocultures, in a physiologically relevant environment allowing them to stay functional for extended periods of time.

Here, we assessed whether a microphysiological system (MPS), also known as Organ-on-a-Chip (OOC), *in vitro* liver model could be used to understand the detailed mechanistic aspects of liver toxicity. The MPS has previous been shown to maintain highly functional 3D liver microtissues, under flow, for up to 4 weeks [3], potentially making it highly suited to assessing DLL. We used two antidiabetic thiazolidinediones, troglitazone (was market approved and later removed due to DLU) and pioglitazone (approved medicine but with known DLL risk) to assess whether the MPS can detect acute and chronic toxicity. DLL by both of these compounds is typically difficult to detect using standard *in vitro* liver assays and *in vivo* pre-clinical models [4]. For each compound, a range of functional liver-specific endpoints were analysed (inc. clinical biomarkers) across a concentration response to generate EC50 curves. Functional liver-specific endpoints were analysed to create a distinct mechanistic "signature of hepatotoxicity" from the MPS to demonstrate its capacity to assess human DLL Irisk of novel agents.

AIMS

- 1. Demonstrate the MPS platform capacity to generate $\rm EC_{50}$ curves for six toxicological endpoints for a known toxicant, troglitazone.
- Demonstrate that the MPS platform can detect DILI responses from a mild toxicant – pioglitazone.
- Demonstrate how using multiple endpoint analyses enables the generation of a hepatotoxicity signature.

MATERIALS AND METHODS

Cryopreserved primary human hepatocytes (PHH) were obtained from BioIVT (Europe). 0.6 x 10⁶ PHH were seeded into each well on a PhysioMimixTM OOC LC-12 plate (CN Bio Innovations) in seeding medium (William's E Medium, 36% Cocktail A, 5% FBS, 1 µM Dexamethasone). Media was changed at Day 1 with maintenance medium (William's E Medium, 4% Cocktail B and 1 µM Dexamethasone). The cells were cultured in the PhysioMimixTM platform for up to 2 weeks.

At Day 4, each compound was dosed at 7 concentrations in WEM maintenance medium containing 0.1% DMSO, and then every 48 hours for 8 days. Vehicle control consisted of WEM maintenance medium containing 0.1% DMSO. Treated and untreated wells were randomized throughout the plates, and each condition was tested in triplicate.

Production of albumin was measured by ELISA (R&D systems), LDH release was quantified using the Cyto-tox96 assay (Promega), urea synthesis was quantified using QuantiChrom™ kit, CYP3A4 activity was measured using P450-Clo™ CVP3A4 Assay (Promega), ALT activity was measured with Alanine Transaminase Activity Assay kit (Abcam), and cell viability was assessed using the CellTiter-Clo® 3D Cell Viability assay (Promega). Compounds were procured from Tocris Bioscience.

RESULTS

A) The in vitro model utilities the PhysioMimik^{III} OOC Microphysiological System, which uses open well plats designed for the cuture of primary liver cells in 30 in an engineerer scaffold. B) Schematic representation of an LCI2-MPS liver-on-chip plate, scaffold and live 30 microtissue formed within its microchannels. C) Evidence of formation of 3D polarizet liver microtissue screasting the liver microarchitecture.

Figure 2 – Liver MPS produces highly consistent and highly function liver microtissues

Before doising with compound, liver microtissues were assessed for A) Urea synthesis and B) CYPSMA activity. Red dots - cultures prior to treatment with troglitazone, and blue dots cultures prior to treatment with hoginizance. Data shown also includes mean values ± SD [N=24]. Urea QC pass range = 40-100 ug/l0⁴ cells/day. CYPSA QC pass range = 1-5 pmol/l0⁴

CONCLUSIONS

Figure 3 – Determining EC₂₀ concentrations for multiple hepatotoxic endpoints following acute and chronic exposure to trogelitazone. User microtissues exposed to compared and analysed for Al LDH release, [B] ALT release, [C] ALDH reloase, [C] ALDH release, [C]

	Troglitazone				Pioglitazone			
Assay	Assay 48		192 hrs		48 hrs		192 hrs	
	EC50	R ²	EC50	R ²	EC50	R ²	EC50	R ²
LDH	110	0.98	ND		ND		ND	
ALT	131	0.95	ND		ND		ND	
Albumin	73	0.93	51	0.93	69	0.80	87	0.72
Urea	70	0.93	100	0.74	86	0.73	ND	
CYP3A4	-	-	87	0.98	-	-	265	0.61
ATD			84	0.92	-		3//8	0.69

 Table 1 - Liver microtissues detect toxicity of troglitazone and pioglitazone.

 Liver microtissues exposed to both compounds for 48 or 192 hours. ND = data not plottable as $EC_{\rm opt}$ curve. Line = not assayed. Datashown are generated from seven-point dose responses, with

Figure 4 – Measuring hepatic biomarkers over time following exposure to troglitazone and pioglitazone demonstrates acute and chronic toxicity effects Liver mirrotissues were exposed to troglitazone and pioglitazone for 48 hrs [loide], 96 hrs [ed], 144 hrs [green] and 192 hrs [purple]. Cell culture medium was refreshed every 48 hours and analysed for albumin and tree synthesis. Data shown are mean = 50, N=3.

The acute and chronic exposure of troglitazone were investigated using a Liver MPS model. Functional and cell health endpoints were used create a distinct mechanistic "signature of hepatotoxicity" and demonstrate the ability of the MPS to predict DILI risk. The inclusion of ALT, a routinely measured clinical marker, within the panel of endpoints enables a direct comparison to be made between in vitro data and in vivo outcomes. Troglitazone caused a clear acute toxic response, Cmax driven, that was detected by ALT and LDH release and a rapid reduction in albumin and urea production at circa 15x Cmax. Cellular endpoints (CVP activity and ATP content) further confirmed troglitazone toxicity, generating highly comparable EC50 values for mail assays. This data mirrors that of alternative advanced 3D in vitro models which report similar EC50 values for troglitazone, and outperforms standard in vitro PHH culture where this DIL-inducer remains undetected [4].

Both acute and chronic Pioglitazone toxicity effects were detected. No LDH or ALT release was detected, however, after 48 hrs a mild reduction in albumin and urea was reported at circa 25 x Cmax. The effects on albumin persisted for 192 hrs, whilst a reduction in CYP activity and ATP content was observed at high Pioglitazone concentrations, circa 100 x Cmax. Together, these results demonstrate the ability of the liver MPS to detect the toxicity of pioglitazone is not observed [4]. The data demonstrates the value of measuring a range of endpoints to produce a "signature of hepatoxicity", as by doing so, drugs with differing level of DLL concern. The detectable by other in vitro methods) and the mechanisms of that toxicity revealed. By incorporating this liver MPS model into drug development work flows it will enable mechanisms of DLL to be better understood and help to reduce drug attrition by identifying earlier in the development process (before clinical trial initiation) compounds with human-specific DLL concern.

(I) Thakas, 5 et al. The Lever Tanicity Knowledge Base LKTB) and drug induced liver (pige) (EU) Eladostation for essensment of human liver (pige) East Bases of the Control of the Cont