Production of a Nanobody-based affinity resin for the purification of GFP-tagged proteins

Paul White¹, Niklas Amthor², Chi Tung Wong¹, Sandeep Talapatra¹

- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY
- University of Leeds, Woodhouse Lane, Leeds, LS2 9JT

Introduction to the Protein Science and Innovation Group at GSK

Production of an anti-GFP nanobody resin

Background: Nanobodies are single variable domain fragments of camelid heavy chain antibodies (V_HH) and have been exploited in the development of novel protein affinity purification technologies¹. Here we purify a recombinant GFP-specific nanobody described in recent literature^{2,3} and covalently conjugate it to NHSactivated agarose thereby producing an in-house anti-GFP affinity resin. The affinity resin can bind purified EGFP and EYFP as well as capture EGFP-tagged proteins from cell lysates. This proof-of-concept work sets the foundations for the generation of a repertoire of nanobody-based affinity resins specific for a range of protein tags commonly used in our existing high-throughput expression (HTX) platform. This concept can be expanded to magnetic resins for use in the automated purification screening platforms currently in development within the Protein Science Group at GSK.

Verification of binding

Generation and testing of affinity resin

Conclusions

References and Acknowledgements

- Anti-GFP nanobody was successfully purified from *E. coli* with a yield of ~30 mg (6 L culture)
- Purified nanobody was able to bind EGFP and EYFP, but not mCherry
- The nanobody was successfully conjugated to NHS-activated agarose
- The binding capacity of the resin was determined to be 1.2 mg purified GFP per 1 ml resin, consistent with commercially available resins
- The resin was able to capture and partially purify a GFP-tagged protein from a cell lysate
- GFP-tagged proteins can be eluted by tag cleavage or low pH elution
- Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem (2013) 82:775–97. doi:10.1146/annurev-biochem-063011-092449
- Zhang, Z., Wang, Y., Ding, Y. et al. Structure-based engineering of anti-GFP nanobody tandems as ultra-high-affinity reagents for purification. Sci Rep 10, 6239 (2020). https://doi.org/10.1038/s41598-020-62606-7
- Fridy, P., Li, Y., Keegan, S. et al. A robust pipeline for rapid production of versatile nanobody repertoires. Nat Methods 11, 1253–1260 (2014). https://doi.org/10.1038/nmeth.3170

I kindly acknowledge Niklas Amthor, a previous placement student who carried out much of this work and is rightfully listed as a co-author. Thank you to Chi Tung Wong for preparing introduction figures. I thank members of the Protein Science and Protein Technologies Groups for helpful discussions during this project. I particularly thank Rajesh Sundaresan for the initial concept as well Angela Bridges for nanobody construct design.

